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Abstract
Defense mechanisms in fruit against invasion by fungal pathogens fall into several 
categories, including fruit physiological factors, passive defense responses, and 
active defense responses. Colletotrichum spp. are common fruit rot pathogens on 
a variety of crops. The infection strategy of Colletotrichum pp. varies depending 
upon the host and the tissue type being colonized and range from hemibiotrophy 
to necrotrophy. Anthracnose fruit rot caused by C. acutatum is the most important 
postharvest disease of blueberries (Vaccinium corymbosum). In order to better 
understand host resistance mechanisms in blueberry fruits, the resistant cultivar 
Elliott was compared with the susceptible cultivar Jersey. Higher levels of hydrogen 
peroxide and differentially expressed defense-related genes were found in ‘Elliott’ 
than in ‘Jersey’ fruit after inoculation. Furthermore, higher levels of anthocyanins 
and flavonols, including two distinctive compounds, were observed in Elliott fruits 
and two unique flavonols were present in Elliott. Additionally, pH and sugar 
content were implicated as being involved in host resistance in blueberry fruits. 
The results from these studies provide a significant contribution to the 
understanding of the multiple factors that contribute to anthracnose fruit rot 
resistance in blueberry.

Introduction
Colletotrichum (teleomorph: Glomerella) species are ubiquitous fungi in the 

phylum Ascomycota and have been recovered from almost every plant species 
(47). Several members of the genus commonly cause anthracnose fruit rot of 
fleshy fruits, including C. acutatum J.H. Simmonds, C. coccodes (Wallr.) S. 
Hughes, and C. gloeosporioides (Penz.) Penz. & Sacc. Since symptoms often 
appear when fruit starts to ripen, the disease may also be termed ripe rot. The 
disease cycles for Colletotrichum spp. that infect fruit vary by host and climate. 
In temperate regions, the fungus overwinters on infected host tissue and 
releases conidia that infect green fruit during rainy periods the following spring. 
The infections remain latent until the fruit ripens (51). On strawberry leaves, the 
fungus can also survive and reproduce without causing symptoms during this 
stage (24). The latent phase of the infection often causes problems in estimating 
whether the disease is present and when the infection actually takes place. 

When fruits ripen, particularly in strawberry and blueberry, the initial 
symptoms of infection are softening of the fruit, followed by the appearance of 
acervuli erupting through the fruit surface (Fig. 1). Lesions become sunken and 
the fruit eventually shrivels up. Secondary infections on adjacent fruit occur via 
splash dispersal of conidia produced on the surface of infected fruit (21,50).

The intent of this review is to discuss the literature on host defense 
mechanisms associated with fruit infections by Colletotrichum species of several 
plant species with a focus on recent advances in our understanding of resistance 
to anthracnose fruit rot in blueberries. 
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The Infection Process
The infection process typically starts when a conidium lands on the host, 

attaches itself, and begins to germinate by forming a germ tube, which gives rise 
to an appressorium. The appressorium, eventually becomes melanized and 
develops an internal light spot that corresponds to the penetration pore (13). The 
melanin inside the appressorium alters the permeability of the cell wall, creating 
a hypertonic environment that allows the fungus to directly penetrate the host 
epidermis using turgor pressure (51). 

Many studies have investigated the infection strategies of Colletotrichum
species on a variety of fruit crops, including almond (14), avocado (10), 
blueberry (52), olive (15), and strawberry (11). Following direct penetration of 
host tissues, Colletotrichum species generally two different host infection 
strategies depending on the tissue or host being colonized: intracellular 
hemibiotrophy and or subcuticular intramural necrotrophy (32). Intracellular 
hemibiotrophy is used to describe the direct invasion of the initial host cell by a 
primary infection vesicle, followed by the proliferation of thick primary hyphae 
and thin secondary hyphae. Only in later stages of the infection process does the 
fungus become necrotrophic. In subcuticular intramural necrotrophy, 
Colletotrichum spp. grow superficially under the plant cuticle, generally 
producing thinner necrotrophic hyphae sooner that do not invade the host tissue 
intracellularly. 

Intracellular hemibiotrophy requires a close cytoplasmic interaction between 
the host and the pathogen. Pathogens with this strategy are considered 
specialists, while subcuticular intramural necrotrophy does not require this 
closeness; therefore, these pathogens could be considered more generalists (36). 
Different infection strategies in strawberry appear to be associated with tissue 
type: intercellular hemibiotrophy occurs on leaves (2) and subcuticular 
intramural necrotrophy occurs on petioles, stolons, and leaves (2,11). In olives, 
while both these strategies were observed, it was not related to host plant 
resistance or tissue type (15). However, in blueberries, the type of infection 
strategy was associated with a susceptible or a resistant interaction (52). 
Additionally, a hypersensitive response was observed in the resistant cultivar but 
not in the susceptible cultivar around 96 hours post inoculation (29).

In blueberries, a lower rate of conidium germination and appressorium 
formation was observed on a resistant cultivar (Elliott) compared to a 
susceptible cultivar (Jersey) (52), but only on ripe fruit, as no differences were 
observed on immature fruit (26). The difference appears to be the result of a 
relative increase in the rate of appressorium formation on the susceptible 
cultivar Jersey as the fruit ripens, whereas the rate on the resistant cultivar 
Elliott remains steady across fruit development stages (26). A possible reason 
for this phenomenon could be changes in the structure or composition of the 
waxy cuticle in susceptible fruit that stimulate conidium germination and 
appressorium formation. In avocados, cuticular wax has been shown to trigger 
conidium germination and appressorium formation of C. gloeosporioides. 
However, waxes from non-host plants strongly inhibited appressorium 
formation (37).

Passive Host Defenses
Fruit physiological factors. The infection process of Colletotrichum spp. on 

fruits has been studied in a number of plant pathosystems. In general, as fruits 
start to ripen they become increasingly susceptible to infection (6,30,43,54). 
During fruit ripening, many physiological changes occur, such as a reduction in 
fruit firmness, changes in pH and cell wall composition, and an increase in 
soluble sugars and secondary metabolites, such as anthocyanins (3,44). In 
avocado, several factors have been associated with increased fruit susceptibility 
to infection by Colletotrichum gloeosporioides as fruit ripens, including an 
increase in fruit pH (43), a decrease in preformed antimicrobial compounds 
(41), and pathogenicity factor inhibitors such as epicatechin (18). 
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Soluble sugars may also play a role in defense responses during ripening. 
Guava cultivars that contained high levels of soluble sugars and ascorbic acid 
were also the most resistant to Glomerella cingulata (Stoneman) Spauld. & H. 
Schrenk (anamorph: C. gloeosporioides) (46). In grapes, the accumulation of 
antifungal proteins and sugars during fruit ripening is an important defense 
mechanism against the fungal pathogens Botrytis cinerea Pers.:Fr. and 
Guignardia bidwellii (Ellis) Viala & Ravaz (45,49). In blueberries, our research 
has shown that there is a positive linear correlation between fruit sugar content 
and anthracnose fruit rot resistance which suggests that soluble sugars may play 
a direct or indirect role in the resistance response (27). However, it most likely is 
an additive effect as indicated by the relatively low r values and the fact that even 
some moderately susceptible cultivars had fairly high soluble sugar 
concentrations. We found that high sugar concentrations in artificial media had 
a negative impact on hyphal growth of C. acutatum, presumably by increasing 
osmotic stress. This reduction was more pronounced with D-glucose than with 
D-fructose (27). This suggests that internal sugar content in fruit may play a role 
in slowing the growth of C. acutatum, especially in combination with low pH, 
during the colonization of the fruit and should be investigated further.

Antimicrobial fruit volatiles have been investigated in relationship to 
anthracnose resistance. In strawberries, the effects of aldehydes, alcohols, and 
esters on mycelial growth of C. acutatum were investigated. (E)-Hex-2-enal was 
identified as the most biologically active. This compound altered the structure of 
the conidial cell wall and plasma membrane, causing disorganization and lysis of 
organelles, and eventually, cell death (1). In blueberries, many of these 
compounds were also identified but the quantity of the volatile compounds was 
not correlated with anthracnose fruit rot resistance in the various blueberry 
cultivars (38,39).

Pre-formed antimicrobial compounds. Several pre-formed compounds 
have been identified in fruit that may play a role in resistance to Colletotrichum
infection. Resistance to C. gloeosporioides in unripe avocado fruit is correlated 
with the presence of fungitoxic concentrations of the preformed antifungal 
compound 1-acetoxy-2-hydroxy-4-oxoheneicosa-12,15-diene (diene) in the 
pericarp of unripe fruits (41). A second antifungal compound was subsequently 
purified from unripe avocado fruit and identified as 1-acetoxy-2,4-dihydroxy-n-
heptadeca-16-ene (42). When fruits ripen, the activity of the enzyme 
lipoxygenase increases causing the degradation of these preformed antifungal 
compounds and fruit gradually becomes more susceptible (43). Interestingly, the 
lipoxygenase activity in avocado fruits is affected by the flavonoid epicatechin, 
which acts as a natural inhibitor (40). In green fruit, the concentration of 
epicatechin gradually decreases upon ripening until the fruit becomes 
completely susceptible. 

Chemical host plant resistance in other Colletotrichum fruit pathosystems is 
less well studied. In bananas, resistance has been attributed to dopamine and its 
oxidation products, which were isolated from the peel of unripe banana in 
concentrations that inhibited C. musae (Berk. & M.A. Curtis) Arx in vitro; it was 
therefore presumed to be a possible preformed antifungal compound. However, 
the concentration of the compound was not synchronized with changes in decay 
development (31). In blueberries, several studies have been carried out into the 
antifungal properties of ripe blueberry fruit extracts from wild highbush 
blueberry plants (Vaccinium corymbosum) as they relate to fruit decay and 
herbivore preference (7,8,9). These studies indicated that the main antifungal 
compounds present in ripe blueberry fruit were water-soluble phenolics and 
acids. They also proposed that resistance in ripe blueberries may be due to an 
interaction between simple phenolic compounds and organic acids and not 
necessarily individual fungitoxic compounds (7). 

In blueberry fruits, research has shown that anthocyanin levels increase at 
the site of infection in the anthracnose-resistant cultivar Elliott and peak around 
96 h after inoculation (29). Additionally, Elliott contains more anthocyanins and 
other flavonoids in noninoculated fruit than the susceptible cultivar Jersey (Fig. 
2) (28). Anthocyanins, which are derived from anthocyanadins (Fig. 2A), do not 
seem to play a direct role in the resistance response but may play an indirect role 
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by protecting host tissues from oxidative damage. The non-anthocyanin 
flavonoid fraction from the resistant cultivar Elliott seems to play a key role in 
suppressing growth and development of C. acutatum. This fraction contains two 
distinctive flavonol (Fig. 2B) compounds: quercetin-3-O-rhamnoside and a 
flavonol glycoside, putatively identified as syringetin-rhamnoside, which may be 
important in the resistance response because of increased antifungal activity 
(Fig. 2B). 

Fig. 1. Symptoms of Colletotrichum acutatum infection of highbush blueberry 
fruit. (A) Visual symptoms of infection 8 days after inoculation in the 
susceptible cultivar ‘Jersey’ and (B) the resistant cultivar ‘Elliott.’ Scanning 
electron micrograph of a typical acervulus on the fruit surface of (C) Jersey 
(bar = 100 µm) and (D) Elliott (bar = 20 µm).
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Fig. 2. Basic chemical structures of two common flavonoid groups 
(anthocyanidins and flavonols) present in fruit of highbush 
blueberries: (A) anthocyanidin backbone which for anthocyanins is 
typically glycosylated at the R3 position; and (B) flavonol 
backbone.

Active Host Defenses
Defense-related proteins. A variety of active defense mechanisms in 

Colletotrichum-plant interactions have been observed, including the production 
of host-derived, cell-wall-degrading enzymes such as chitinases and β-1-3-
glucanases (5,16,23,53). When the genes coding for these products are over-
expressed in plant tissue, the result is often increased disease resistance. For 
example, in transgenic tobacco plants, the overexpression of a chitinase gene led 
to broad resistance against the fungal pathogen Rhizoctonia solani J.G. Kühn, 
and the bacterial pathogen Pseudomonas syringae pv. tabaci (12). Upon 
infection of pepper fruits (Capsicum annuum L.) by C. gloeosporioides, multiple 
defense-related proteins like cytochrome P450 (33), defensin, thionin-like 
protein (34), thaumatin-like protein (20), and esterase (22) are induced in 
incompatible interactions. 

Research has shown that infection by C. acutatum is reduced significantly by 
a polygalacturonase inhibitor protein extracted from apples (17). Host plant 
resistance to fungi in apple (55), raspberry (19), and tomato (48) fruits has been 
linked to these inhibitor proteins. Additional research has shown that these 
proteins are predominately expressed in the epidermal layers of the fruit and 
regulated in response to infection and wounding (55). A novel protein that has 
been identified in pumpkin rinds is capable of inhibiting the growth of C. 
coccodes in vitro at 10-20 μM. This protein was found to be nonphytotoxic and 
heat-stable, and is proposed to be a natural antifungal agent (35).

In blueberries, 37 differentially expressed sequence tags (ESTs) used to 
identify gene transcripts, were detected in Elliott versus Jersey upon infection by 
C. acutatum. Several of the ESTs had homology to known plant defense genes, 
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such as a class II chitinase, pathogenesis-related protein 10 (PR10), and β-1-3 
glucanase. Two putative genes involved in oxidative stress were also identified: a 
metallothionein-like protein and monodehydroascorbate reductase (26). A more 
detailed investigation of gene expression during the early stages of infection, 
including pre-penetration events, will help to pinpoint when the host first 
recognizes that it is being attacked by C. acutatum and initiates the resistance 
response.

Reactive oxygen species. Reactive oxygen species, which cause cellular 
damage such as hydrogen peroxide (H O ) are important in the resistance 
response in the C. coccodes-tomato fruit interaction. Hydrogen peroxide 
generation occurs around 24 to 48 h after inoculation, corresponding with 
melanized appressorium formation and attempted fungal penetration (25). In 
strawberries, H O  generation plays a role in restricting fungal penetration and 
inhibiting fungal invasion, leading to the hypersensitive response and triggering 
rapid necrosis at infection sites or activating defense-related genes (4). 

In the C. acutatum-blueberry fruit pathosystem, research has shown that an 
oxidative burst similar to that in the C. coccodes-tomato fruit interaction occurs 
(25) and seems to correlate well with the formation of melanized appressoria 
(25,28,52), indicating attempted penetration. However, reactive oxygen species 
may be plant or pathogen derived. If it is plant derived, H O  may be important 
in the resistance response in Elliott by preventing fungal penetration. On the 
other hand, if the H O  is pathogen derived this could indicate preferential 
necrotrophy of C. acutatum on Elliott fruit. Since H O  can be a pathogenicity 
factor for necrotrophic pathogens, it may be important in the initial colonization 
of Elliott fruit. However, because of the relatively short duration of the H O
boost and coincident timing with peak appressorium formation (28,52), it seems 
likely that it represents a host response and serves to prevent pathogen ingress. 
In either case, the oxidative stress genes that were identified are likely up-
regulated in Elliott fruit are likely up-regulated to prevent oxidative damage to 
plant tissues (26).

Conclusions
The infection processes of Colletotrichum spp. on fruit are complex and 

potentially involve different infection strategies based on plant tissue type and 
host cultivar. Host plant resistance against Colletotrichum spp. involves multiple 
mechanisms. Fruit physiological factors like sugar content, pH and surface 
waxes can affect fungal growth. Preformed antimicrobial compounds like 
antifungal dienes, resorcinols, or flavonoids may be extremely important in 
unripe- as well as ripe-fruit resistance. Active defenses including induced 
antimicrobial compounds, reactive oxygen species and defense-related proteins 
may also be important in the resistant response in ripe fruit.

The recent research on blueberries has highlighted several of these aspects in 
terms of host resistance. Based on this research we propose a simplistic model of 
the primary differences between the infection process on fruit of a susceptible 
and resistant cultivar (Fig. 3). An improved understanding of the underlying 
molecular mechanisms will lead to novel strategies for management of 
anthracnose fruit rot in blueberry and possibly other diseases caused by fruit-
infecting Colletotrichum species.
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Fig. 3. Proposed model of the defenses responses present during the infection process of C. acutatum on fruit of susceptible (‘Jersey’) and resistant (Elliott) blueberries 12, 48, 
and 96 h post inoculation (hpi). HR = hypersensitive response and PR = pathogenesis-related.
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